"Jack,

In several of your recent postings you say that the flat-space, quantum physics Casimir model that we quantum physicists use (that does not take into account w = -1 implications of dark energy on the microscopic scale) has been overtaken by the discovery of dark energy."

[Jack] Exactly. I am saying that Einstein's local field equation

Guv + /\zpfguv = 0

definitely applies down at scale h/mc ~ 10^-11 cm. Of course the FRW cosmological metric solution does not apply there. That is a different story. In other words the effects of the equivalence principle and general coordinate covariance GCT play an essential role in this problem of zero point energy. In particular, /\zpf ~ 0 in the non-exotic ordinary vacuum where we live. This is because almost all of the random micro-quantum vacuum fluctuation zero point energy density is absorbed into the vacuum coherence field.

Note that the zero point energy density (from all sources) is

too(zpf) = (c^4/8piG*)/\zpfgoo

Where guv is the curved spacetime metric tensor

guv(curved) = nuv(globally flat) + (1/2)d[u,v]

du = (short wave cutoff)^2(Phase of Vacuum Coherence),u

The POST-INFLATIONARY elastic strain tensor (1/2)d[u,v] has all the gravity curvature information. This is not a small perturbation. It is a large non-perturbative term similar to the nonanalytic energy gap in the BCS superconductor theory. The resulting guv curved space-time local field is DYNAMICAL, i.e. "background independent" the way the loop "spin foam" guys like John Baez and Ashktekar mean it. That is, the guv field has same status as the EM Fuv field and objective local events at P are relations between the guv and Fuv local fields and not the formal points in a manifold that have no direct physical meaning i.e. active Diff(4) symmetry as explained by Rovelli in his new book on Quantum Gravity. You can then do perturbation theory adding a spin 2 tensor "graviton" quantum field in the smooth curved DYNAMICAL guv metric. There is no "quantum foam" in this theory. When the vacuum coherence -> 0 you simply get back globally flat space-time, i.e. the PRE-INFLATIONARY FALSE VACUUM. You do not directly quantize guv! Doing so is non-renormalizable for a very good reason. The pre-inflationary globally flat sub-stratum is renormalizable of course. There is a good reason why John Baez is not able to derive

Guv = 0

from Penrose combinatoric spin foams and will not be able to do so ever.

The GCT group derives from the U(1) local gauge transformations on the Vacuum Coherence phase.

That is, the curvature of 4D space-time is the non-Abelian local compensating gauge force field from breaking the symmetry of the 4-parameter translation group infinitesimally generated by total Energy-Momentum 4-vector. The compensating field du elastic world distortion field restores the broken translational symmetry. As Kibble showed 40 years ago you really need to locally gauge the entire 10 parameter Poincare group. The spin connection from the 6-parameter Lorentz group also plays a significant role and there is a torsion field in the completely self-consistent theory, although it usually plays no role in the vacuum problem only coupling to the spins of on-mass-shell particles in the Tuv source term. However, this assumption may not be correct - a matter for future research.

Where

/\zpf = (short wave cutoff)^-2[(short wave cutoff)^3|Vacuum Coherence|^2 - 1]

G* may be larger than Newton's G at these small scales, i.e. it is a running coupling constant of an emergent effective field theory, which in this case is a local smooth c-number field from the ODLRO in the physical vacuum.

Globally flat quantum field theory is intrinsically an unstable theory because global special relativity does not permit the emergence of gravity.

[Hal] "Indeed, you use this claim to (a) criticize the Casimir model and (b) come up with a "dark energy" model for Shoulders' charge cluster phenomenon ("dark energy in a bottle," you call it).

[Jack} Correct. There are two very serious errors in the Casimir Type II model you use. Casimir simply did not know the correct physics, neither did Milonni. No one knew at the time they published their stuff. This only became clear post-1999 - actually 2002.

The serious errors are, as Mike Turner and everyone else working in dark energy at GR 17 will tell you

1. w = (pressure)/(energy density) = -1 for ALL ZPF not +1/3

2. You cannot have an exterior /\zpf = (mc/h)^-2 outside the EVO. The universe could not exist if that were the case. This is very fundamental!

[Hal] "When I point out that Casimir, Milonni, I, et al. use the quantum vacuum fluctuation Casimir-type model to advantage (and, BTW, get the right answer for Casimir attraction between parallel plates!) you point out that it is a false model in a flat space that does not take into account the recent GR cosmology concepts and therefore is flawed ("Casimir's greatest blunder," you call it!)."

[Hal] What you say here is false. You have done a "bait and switch". Casimir does not use your Model II to get the parallel plates result! That is, Casimir does not assume /\zpf ~ (mc/h)^-2 outside the plates with /\zpf ~ 0 inside the plates!

In fact what we have in the parallel plates is that /\zpf ~ 0 both inside and outside the plates so that you can use ordinary QED boundary effect to a good approximation in that case. The EVO is a completely different phenomenon and you cannot work by analogy. The open finite edges of the plates ensure /\zpf ~ 0 everywhere!

"0" here means ~ 10^-56 cm^-2.

So, you have misrepresented what I say for the open finite parallel plates. I say, since /\zpf ~ 0 both inside and outside the plates, you can use Casimir's Type I QED model for that problem. You blurred the distinction between Type I and Type II in your remark above.

[Hal] Specifically, you argue that the ZPE radiation pressure modeling that uses w = 1/3 vacuum radiation pressure forces (as in the 1988 Phys. Rev A paper by Milonni et al., "Radiation pressure from the vacuum: Physical interpretation of the Casimir force") must be set aside in favor of the use of the w = -1 repulsion vacuum forces.

[Jack] Yes, I certainly say that! Milonni has made a serious error in fundamental physics. His paper is wrong period. w = +1/3 only works for REAL PHOTONS on the classical light cone.

[Hal] Here is my challenge to your line of logic. Forget the Shoulders' model for the moment, and simply show how your line of logic involving the w = -1 repulsion vacuum force leads to the known attractive Casimir force between parallel plates, which has been precisely measured and accounted for on the basis of the quantum physicists' use of the w = 1/3 vacuum forces. It would seem that you insist that instead the w = -1 repulsive force is the important force on this level, previously neglected, so please show how to derive the attractive Casimir force by your counter-claim with its opposite-sign vacuum force.

[Jack] Trivial. I already showed you above. The parallel plates happens in ORDINARY non-exotic vacuum where /\zpf ~ 0 so you can use the Type I Casimir QED model! The ordinary open finite parallel plates experiment does not have and dark energy exotic vacuum effect at all because the vacuum coherence has adjusted to keep /\zpf ~ 0 every where in the relevant regions. That is the total ZPF pressure and energy density is zero in the ordinary non-exotic vacuum! Notice that the virtual photon ZPF pressure and energy density is not the total. All quantum fields contribute to /\zpf not only the virtual photons.

*Note also that the induced gravity larger (i.e. more negative) virtual photon "negative pressure" outside the plates will repel more strongly than the weaker negative pressure between the plates. Therefore, this will also give a net attractive force between the plates. However, I am not suggesting that this attraction is identical to the QED Casimir Van Der Waals force between the UNCHARGED PLATES (qualitatively different form the CHARGED EVOs).

* However, the plates SLIGHTLY perturb this. So, in the open plates case you will have a slightly higher virtual photon energy density outside the plates than you have inside because there are the additional long-wave modes. Therefore you have more negative virtual photon pressure outside the UNCHARGED plates than inside the plates. However, the positive virtual electron-positron pressure will compensate the virtual photon negative pressure to keep /\zpf ~ 0 everywhere and the resulting attractive Casimir force between the plates is simply the VERY WEAK induced Van Der Waals force as shown by Ian Peterson and others. There is no /\zpf exotic vacuum effect in this case at all! You have compared apples to oranges. You have confused two incompatible "total experimental arrangements" in Niels Bohr's sense. There is no good analogy between the EVO phenomenon with a CHARGED N-electron "shell" "dark energy bottle" and the tiny attractive force between two finite UNCHARGED very clean flat plates.

[Hal] "In summary, we see how Casimir's positive-radiation-pressure "blunder" model leads to agreement with experiment; we don't see how your opposite-sign dark-energy w = -1 repulsion force model would lead to the observed attraction. Please show this. If you can show this for the standard parallel plate Casimir Effect, then consideration of its use for more exotic geometries (e.g., Shoulders' charge cluster phenomenon) would be warranted. If not ....."

[Jack] I have answered your misplaced objection.

Collegially,

On Sep 2, 2004, at 8:08 AM, Jack Sarfatti wrote:

As reading Mike Turner's article below shows, zero point energy density and its equal and opposite pressure, together directly warp space-time. This is different from QED based on globally flat spacetime without any gravity at all in which to a rough approximation you can ignore energy scales and simply subtract off the virtual photon zero point energy density with "normal ordering" of the photon creation and destruction non-Hermitian operators. See Milonni's book "The Quantum Vacuum" for these details, which ignore gravity effects.

Hal needs vanishing zero point energy density inside the EVO shell with an enormous zero point energy density outside the shell. This immediately falsifies his model, apart from the other issue that he needs a positive external pressure to hold in the Coulomb repulsion of the N electrons making the EVO thin shell. Casimir was not aware of the general relativity constraints on the problem. Casimir's Type II model would require that we live in an exotic vacuum where /\zpf ~ (mc/h)^2 ~ 10^22 cm^-2. In fact the vacuum we live in has /\zpf ~ 10^-56 cm^-2. Indeed the Casimir-Puthoff external /\zpf would not permit our universe to exist! It would warp space-time too much! In fact the EVO needs a negative pressure inside its shell with /\zpf ~ 10^-56 cm^-2 outside it where we exist. How come the non-exotic vacuum has such a small /\zpf? Simple, the vacuum coherence ABSORBS the random ZPF into the VACUUM CONDENSATE as a kind of zero entropy superfluid reservoir. The random ZPF is analogous to the "normal fluid" excitations. This also solves Penrose's problem in "Fashion, Faith and Fantasy" explaining why the early SPATIALLY-FLAT (on large-scale only) inflationary universe has low initial thermodynamic entropy setting the direction of the Arrow of Time of irreversibility of the Second Law of Thermodynamics to point the same way as the expansion of the universe.

On Sep 1, 2004, at 11:28 AM, Jack Sarfatti wrote:

Yes, thanks Joel. Mike Turner's remark below, in his otherwise very excellent Op/Ed, may well prove to be his "greatest blunder". :-)

On Sep 1, 2004, at 10:03 AM, Joel Isaacson wrote:

Public service: Mike Turner's Physics Today article on Dark Energy ===>>

[Note: the contrarian statement therein is: "Even though repulsive gravity

sounds like fun, dark energy--as far as we know--can't be bottled up to

create an object with antigravity." =jdi=

TYPO-CORRECTED! Also a new error by Turner detected below?

Dark Energy: Just What Theorists Ordered

Michael S. Turner

In the article on page 53, Saul Perlmutter describes how his team, and one

led by Brian Schmidt, used distant supernovae to discover that the expansion

of the universe is speeding up, not slowing down. At puzzling times like

these, theorists are called upon to provide understanding and, in the

process, to convince their audience that they actually anticipated the

puzzling discovery (maybe even predicted it).

The discovery of cosmic speedup, perhaps one of the most important in all of

science over the past 25 years, saved a beautiful theory--inflation--and

presented theorists with a wonderful puzzle--"dark energy," the stuff

causing cosmic speedup. What more could we ask for?

Since 1980, Alan Guth's cosmic inflation has been the driving idea in

cosmology. Central to inflation is a very early, tremendous burst of

expansion, powered by the potential energy associated with a hypothetical

scalar field called the inflaton. In a tiny fraction of a second, a small

bit of the universe is blown up to a size that encompasses all that we can

see today and much, much more. Any spatial curvature becomes flattened, and

quantum fluctuations in the inflaton field are stretched from subatomic to

astrophysical size. The decay of the inflaton produces the heat of the Big

Bang, and the quantum fluctuations in it lead to the matter inhomogeneity

that provides the seeds for all the structure in the universe, from galaxies

to clusters of galaxies and beyond.

Inflation not only explains, it also predicts. Its predictions include: a

spatially flat universe, a pattern of anisotropy in the cosmic microwave

background (CMB) that arises from the quantum-produced density

perturbations, and a sea of gravitational waves. Inflation was the

inspiration for the very successful cold dark matter (CDM) scenario for how

structure formed. CDM theory is based on a flat universe, dark matter made

of slowly moving elementary particles, and density perturbations arising

from quantum fluctuations.

From the beginning, inflation's signature prediction--a flat universe--was

in trouble. According to Einstein's theory, the mean energy density c^2rho0

determines the spatial curvature of the universe; for a flat universe, it

must be equal to the critical energy density. In cosmology talk, Omega0 = 1,

where Omega0 is the ratio of the mean energy density in any and all forms to the

critical energy density. In 1980, astronomers' measurements of Omega0 indicated

its value was something around 0.1.

Inflationists (like me) pinned our hopes on growing evidence for enormous

amounts of dark matter that hold galaxies and clusters of galaxies together.

This dark matter is distributed more diffusely than stars, making it harder

to inventory. Estimates for Omega0 rose, and for a while it appeared that enough

dark matter would be found to meet the inflationary prediction.

Cosmic troubles

By 1990, the problems for a flat universe were piling up. Estimates of the

amount of dark matter were getting better and still falling short, and

observations of large-scale structure suggested a CDM universe with a matter

density that was one-third of the critical density, that is, Omega(M) = 1/3.

Several of us sheepishly made a suggestion1 to save inflation: Add a

cosmological constant, /\, for the missing two-thirds of the critical

density, Omega(/\) = 2/3. Thus Omega0 = Omega(M) + Omega(/\) = 1. The inflationary prediction is a

flat universe, not necessarily Omega(M) = 1.

To save a beautiful theory, theorists are willing to consider the

implausible, although not the impossible. With its checkered history in

cosmology, the cosmological constant was certainly implausible. Albert

Einstein used it to create a static model of the universe; Hermann Bondi,

Thomas Gold, and Fred Hoyle used the cosmological constant to address the

fact that the time back to the Big Bang appeared to be less than the age of

Earth, and now it is invoked to save inflation.

By the mid-1990s, the observational evidence for the /\ version of CDM,

including the first hints from CMB anisotropy measurements that the universe

is flat, was becoming compelling, at least for theorists.1 However, there

was a problem: LCDM (CDM with a cosmological constant) also predicts

accelerated expansion, and the first supernova results did not yet show

acceleration.

With the discovery of cosmic speedup in 1998, everything quickly fell into

place: The universe is flat, with one-third in matter and two-thirds in

something like a cosmological constant. Overnight, skeptical astronomers

became believers in inflation. Strange as it was, cosmic speedup was the

missing piece in the puzzle. It saved inflation, but be careful what you

wish for!

According to Isaac Newton, gravity is always attractive, because the

strength of an object's gravity depends only on its mass. Einstein's theory,

however, allows for repulsive gravity and cosmic speedup because the

strength of gravity also depends on pressure, p, with c^2rho + 3p acting as the

source of gravity. Something that is very elastic (that is, negative

pressure p < -c^2rho/3) has gravity that repels, rather than attracts.

Something with pressure comparable to its energy density is exotic. Matter,

even at the center of a sun, has a pressure that is orders of magnitude

smaller than its energy density. The ratio of pressure to energy density is

characterized by the square of the internal velocity divided by c2. Thus

dark energy is intrinsically relativistic and is more like energy than

matter. Even though repulsive gravity sounds like fun, dark energy--as far

as we know--can't be bottled up to create an object with antigravity.

Quantum mechanics provides a candidate for something that is very elastic:

The virtual pairs that fill the vacuum have negative pressure.

I think Mike made an error here. The virtual pairs have positive pressure. The virtual photons have negative pressure. See Milonni's Quantum Vacuum book where boson statistics require positive ZPF energy density c^2rho and Fermi statistics require negative ZPF energy density, and both have w = -1. Of course a virtual pair condensate will be like a boson superfluid.

To see this,

compute the pdV work done by an expanding piston that encloses quantum

vacuum; you will find that pvac = - c^2rhovac where rvac is the quantum vacuum's

energy density (see the figure). Thus, quantum vacuum energy is very

repulsive because c^2rho + 3p = -2 rho(vac). Mathematically, quantum vacuum energy is

equivalent to Einstein's infamous cosmological constant /\.

Although Einstein dismissed the cosmological constant as a personal blunder,

quantum mechanics makes it obligatory. Unfortunately, even the best quantum

"mechanics" have failed to produce a sensible prediction for /\. The sum of

zero-point energies diverges due to short-wavelength modes. Truncating at an

energy scale beyond which we can appeal to physics ignorance illustrates the

enormity of the problem: For a 100-GeV cutoff, Omega(/\) = 10^55. This disparity is

the greatest embarrassment in all of theoretical physics.

Many particle theorists believe that a correct calculation of L will yield

precisely zero because of the utter implausibility of obtaining a number 55

or more orders of magnitude smaller than its "natural value." If quantum

nothingness weighs nothing, what, then, is causing the universe to

accelerate? Dark energy!

Mystery deepens

What do we know about dark energy and how can we learn more? It accounts for

about two-thirds of the critical energy density and is much more smoothly

distributed than matter. If it clumped, we would see its effects when

studying clusters and other gravitationally bound objects, and we do not.

Dark energy is characterized by an "equation of state," which is the ratio w

(pronounced "dubya") of its pressure to its energy density w = p/c^2rho. Although

w need not be constant, for simplicity I will assume that for now.

If dark energy is vacuum energy, w = -1 (for comparison, for nonrelativistic

matter w = 0, and for radiation, w = 1/3.) The ratio w determines how the

energy density of dark energy changes as the universe expands: rho ~

(1/R^3)(1+w), where R is the cosmic scale factor. Negative pressure (w < 0)

leads to an energy density that decreases more slowly than matter (rho(M) ~

1/R^3). Because of this fact, dark energy was less important in the past and

will become more important in the future. Why dark energy is just becoming

important today begs for explanation. I call this the Nancy Kerrigan

problem--why me, why now?

That dark energy was unimportant in the past is good: This fact means the

repulsive gravity of dark energy doesn't interfere with the attractive

gravity of dark matter that drives the formation of cosmic structure. The

lesser importance of dark energy in the past is also the root of an

independent argument for cosmic acceleration. The "missing energy" needed in

addition to matter to account for the flat universe determined from CMB

measurements (see the story on page 21) must have been unimportant in the

past; otherwise its smooth distribution would have interfered with the

formation of structure. To make the missing energy unimportant in the past

requires that w < -1/2, which implies that it must have repulsive gravity.

Imaginative theorists have suggested an array of possibilities for dark

energy. Many involve the existence of a new, scalar field and the idea that

we are in a period of mild inflation while this field (called quintessence)

rolls toward its ground state. Because quintessence and inflation both

involve accelerated expansion and the underlying cause of each is poorly

understood, it has been speculated that they might be related. Thus far,

quintessence has raised new questions without shedding light on dark energy.

What we call dark energy could be the harbinger of exotic physics rather

than a new, etherlike substance. Cosmic acceleration could be signaling that

Einstein's theory requires modification, perhaps due to the influence of

unseen additional spatial dimensions. An interesting twist is that some

string theorists believe that cosmic speedup and string theory, which itself

predicts extra dimensions, are incompatible. This will come as a relief to

the less enthusiastic fans of string theory.

Destiny

One thing is clear: Dark energy leads to a revision in our view of cosmic

destiny. With matter alone, destiny and geometry are one: Closed universes

recollapse and open or flat universes expand forever. If dark energy is

vacuum energy, our flat universe will continue accelerating to a bleak

future--in 100 billion years all but a few hundred galaxies nearby will have

their light shifted too far into the red to be seen. If dark energy

eventually dissipates, the universe will begin to decelerate, possibly even

recollapse.

Because dark energy is so diffuse, cosmology offers the only known way of

getting at it, and w is the hook. The energy density of dark energy, which

depends on w, affects the expansion rate. Models for dark energy differ in

their predictions for w and thus in their predictions for the expansion

history of the universe. Distant supernovae, galaxy clusters, and

gravitational lensing can all be used to chart the past expansion rate and

determine w. And there is much interest in doing so: Two new centers--the

Kavli Institute for Particle Astrophysics and Cosmology at Stanford

University and the NSF Center for Cosmological Physics at the University of

Chicago--list the study of dark energy as a primary science goal. The US

Department of Energy is planning a dedicated space telescope for supernovae,

the SuperNova/ Acceleration Probe (SNAP). NASA has targeted dark energy for

one of its new Einstein probes. NSF is considering an 8-m wide-field survey

telescope to study dark energy, the Large-aperture Synoptic Survey Telescope

(LSST). Add in my nine-year-old son's theoretical work, and progress is

assured.

Dark energy is one of the deepest and most exciting puzzles in all of

science. It is likely that a crazy new idea is needed to explain cosmic

speedup and resolve the cosmological constant problem. (That does not mean

every crazy idea is a solution.) The payoff will be well worth the effort:

We will gain new insights into the nature of matter, space, and time, and

shed light on our cosmic destiny.

References

1. M. S. Turner, G. Steigman, L. Krauss, Phys. Rev. Lett. 52, 2090 (1984);

P. J. E. Peebles, Astrophys. J. 52, 2090 (1984); L. Kofman, A. A.

Starobinskii, Sov. Astron. Lett. 11, 271 (1985); G. Efstathiou et al.,

Nature 348, 705 (1990); M. S. Turner, Phys. Scr. T36, 167 (1991).

2. L. Krauss, M. S. Turner, Gen. Relativ. Gravit. 27, 1137 (1995); J.

Ostriker, P. Steinhardt, Nature 377, 600 (1996).

--------------------------------------------------------------------------------

Michael Turner is the Rauner Distinguished Service Professor at the

University of Chicago and a staff scientist at Fermilab.

From: Jack Sarfatti

Reply-To: SarfattiScienceSeminars@yahoogroups.com

Subject: [Starfleet Command] Worldwide Exclusive: 'Dark Energy' bomb

more powerful than thermonuke?

Date: Wed, 1 Sep 2004 09:36:15 -0700

Information on Ken Shoulders

1. Long-time associate of Hal Puthoff. Both worked in US Intelligence

Community for years.

2. Brilliant gadgeteer with small microwave devices holds several

important patents.

3. Ken's opinions are taken seriously in the USG Defense Intelligence

Community.

4. Pressure is mounting for Shoulders, Sarfatti and Puthoff to write a

joint paper together showing conflicting models of the phenomenon.

Puthoff uses a model of Casimir's "Type II" in which there is a positive

zero point energy pressure outside the thin shell of electrons and

vanishing zero point pressure inside it. Sarfatti says Casimir made an

error by assuming that the well known "dubya factor" (i.e. w =

(pressure)/(energy density)) is +1/3, which it is for real photons

propagating energy to infinity as electromagnetic radiation. Sarfatti

objects that w = -1 for the virtual photons of the zero point vacuum

fluctuations. That w = -1 for this case is well known to cosmologists

working on the "dark energy" (e.g. Mike Turner's Op/Ed in April 2003

Physics Today). "w = -1 follows from Einstein's equivalence principle

together with Heisenberg's uncertainty principle. Furthermore, boson

statistics require a positive virtual photon energy density, therefore an

equal and opposite negative virtual photon pressure. Virtual quanta are

directly observable in their warping of spacetime. You cannot subtract

them out. The pressure warps space-time three times more than the energy

density. The negative pressure makes repulsive anti-gravity that is the

'Right Stuff' for weightless warp drives, wide wormholes and,

unfortunately 'universe destroying' weird weapons." said Sarfatti.

Sarfatti cited Sir Martin Rees's book "Our Final Hour" on this subject.

Sarfatti's model is the mirror opposite of Puthoff's. "The zero point

pressure is negative inside the thin shell of typically a trillion to ten

thousand trillion electrons in the observed EVOs 10^-5 cm to 10^-5 meters

across and is zero outside. Negative zero point pressure makes the vacuum

like a spring and the electric repulsion does work against the vacuum to

create a metastable EVO. The electrons make a bottle or container for the

anti-gravity dark energy vacuum core of the EVO. Break the bottle to

release the Dark Energy Genie as 'Cold Fusion'. Mike Turner wrote that it

couldn't be done, apparently Ken Shoulders has done what was thought to

be an impossible dream." says Sarfatti.

For further reading see August 2004 Popular Mechanics p. 77

http://popularmechanics.com/science/research/2004/8/dangerous_science/

index5.phtml

The above article mentions the recent unsolved murder of Cold Fusion

advocate Gene Mallove.

And Moscow's PRAVDA

http://english.pravda.ru/science/19/94/379/12737_weapons.html

On Sep 1, 2004, at 7:53 AM, Victor Martinez wrote:

www.prweb.com/printer.php?prid=153747

WORLDWIDE MILTARY ORDNANCE EXCLUSIVE: DARK ENERGY BOMB MORE

POWERFUL THAN NUKES! –

"If done too fast with a large enough Exotic Vacuum Object this would be

a powerful bomb - more powerful than thermonuclear" – Dr. Jack

Sarfatti

(PRWEB) September 1, 2004 -- Experimentalist Ken Shoulders claims that

electrons are behaving in ways thought to be impossible. A new and

previously unknown force appears to be binding the electrons at short

range into clusters of electron charge. Shoulders calls these clusters

Exotic Vacuum Objects, or EVO's.

Shoulders describes this as "a short-range force resembling a positive

charge negating the effect of repulsive electronic charge"

One of Ken Shoulder's latest papers suggests nefarious uses for charged

cluster technology based on EVO's:

"The author can easily imagine a scenario where instructions are

generated with enough clarity for about 1 person in 1,000 to perform the

necessary operations to refine and store a gallon jug of electrons in

the form of Exotic Vacuum Objects (EVO's) ... there is no doubt that

this jug would be light enough to carry and be highly sensitive to

destabilization of a catastrophic nature..."

Ken Shoulders has recently collaborated on several papers with

independent theoretical physicist Dr. Jack Sarfatti, in San Francisco.

Sarfatti suggests that his theory of exotic vacuum dark energy/dark

matter can explain Shoulders' experimental data.

Although Sarfatti hopes for carefully controlled release of energy from

the EVO's, both Sarfatti and Shoulders warn that rapid release of a

large EVO would be explosive, perhaps more powerful than a thermonuclear

device.

Contact Information:

Gary Bekkum

STARstream Research

952-909-3862

----------------------------------------

Disclaimer: If you have any questions regarding information in these

press releases please contact the company listed in the press release.

Please do not contact PR Web™. We will be unable to assist you with

your inquiry. PR Web™ disclaims any content contained in these

release. Our complete disclaimer appears here.

© Copyright 1997-2004, PR Web™. All Rights Reserved

## No comments:

Post a Comment